鲁班是什么家| 三什么什么什么成语| 婚检都检查什么| 消化道出血有什么症状| 什么木质手串最好| 薛之谦为什么离婚| 缩阳是什么意思| 什么能代替润滑油| 粘膜慢性炎是什么病| 红是什么生肖| 古代地龙是什么| 土生金是什么意思| 荠菜长什么样| 梦见买碗是什么意思| 弘字五行属什么| 田各读什么| 鸟来家里预示什么| 汆是什么意思| 嫪毐是什么意思| 艾滋病阴性是什么意思| 灵魂是什么意思| flour什么意思| 铁蛋白偏高是什么原因| 幼小衔接是什么意思| 拉出黑色的屎是什么原因| 驴板肠是什么部位| 王爷是皇上的什么人| 劣迹斑斑是什么意思| 宝宝手足口病吃什么药| 尖嘴猴腮什么意思| 免疫力低会引起什么病| 戒定真香是什么意思| 鸡血藤长什么样子图片| 吃蜂蜜不能吃什么食物| 成都立冬吃什么| 什么东西吃了补肾| spect是什么检查| 孕妇用什么驱蚊最好| 名不见经传是什么意思| 大学院长是什么级别| george是什么牌子| 血糖高可以吃什么主食| 手书是什么| 晚安安是什么意思| 吃什么能变白| 猪儿虫是什么意思| 舌头长泡吃什么药| 吃什么壮阳补肾| 牛仔蓝配什么颜色好看| 王代表什么生肖| 结节是什么意思| 轰20什么时候首飞| 棘突是什么意思| 精斑是什么| 10月底是什么星座| 湿痹是什么意思| 白带多是什么原因| 吃牛油果有什么好处和坏处| 6月9日什么星座| 为什么长火疖子| mia是什么意思| 老年痴呆症又叫什么| 伤口发痒是什么原因| 历程是什么意思| 水保是什么| 怀疑心衰做什么检查| 377是什么| 档次是什么意思| 甲鱼什么人不能吃| 松花粉是什么| 人参不能和什么一起吃| 痣长什么样| 黄鼻涕是什么类型的感冒| 麻了是什么意思| 8.5是什么星座| 肺炎支原体抗体阳性是什么意思| 1月30号是什么星座| 吃什么减肥快| 下面流出发黄的液体是什么原因| 孕妇吃什么鱼对胎儿好| 卡介疫苗什么时候打| 一人吃饱全家不饿是什么生肖| 腺样体挂什么科| 胃寒湿气重吃什么药效果最好| 榴莲和什么水果相克| 曹真和曹操什么关系| hpv用什么药| 烂大街是什么意思| 皮肤黑穿什么颜色| 一动就大汗淋漓是什么原因| 夜代表什么生肖| 雌二醇是什么| 月经褐色量少是什么原因| 大虾炒什么菜好吃| 桑葚有什么好处| 主动脉弓钙化什么意思| 什么的舞姿| 肝火旺盛吃什么食物好| 3.15是什么星座| 买车选什么品牌| 辽宁古代叫什么| 慰安妇是什么意思| 吃什么水果降火最快| 结婚十一年是什么婚| 尿道炎吃什么药| 闪购是什么| 空调为什么要加氟| 阿尔茨海默症是什么症状| 榴莲什么时候吃最好| 阳气不足吃什么药| 厦门有什么区| qd是什么意思| got什么意思| 征兵初检检查什么| 不安是什么意思| 前列腺增生吃什么药最好| 检查肝挂什么科| oder是什么意思| 棕色搭配什么颜色好看| 吃什么可以瘦肚子| 银河是什么| 毛泽东什么时候死的| 吃什么容易怀女儿| 刻舟求剑的求是什么意思| 猪和什么属相不合| 奥美拉唑和雷贝拉唑有什么区别| 梦见小羊羔是什么意思| 脸过敏要注意什么| 香榧是什么| 山竹和什么不能一起吃| 扁桃体发炎不能吃什么| 眼角红肿用什么药| 官杀是什么| 甲状腺是什么功能| 神经官能症挂什么科| 觉悟是什么意思| 肠息肉有什么症状| 倾巢出动是什么意思| 人为什么会打呼噜| 社保基数什么时候调整| 胃酸吃什么食物好| 电饭锅内胆什么材质好| 周期是什么意思| 什么是ntr| 什么国家的钱最值钱| 吃什么药能减肥| 身份证带x是什么意思| 静脉曲张溃烂擦什么药| 逼上梁山什么意思| 子宫内膜炎是什么原因造成的| 吃什么能减脂肪肝| 八面玲珑是什么数字| 拔罐黑紫色说明什么| 山海经讲的是什么| 女性头部出汗吃什么药| 溢于言表是什么意思| 疫情是什么| 能级是什么意思| 月老叫什么名字| 接下来有什么节日| 心肌缺血什么症状| 十年粤语版叫什么名字| 福州有什么好吃的| 吃什么长高| 孕反一般什么时候开始| 苦荞是什么植物| 宫颈多发纳囊什么意思| 布谷鸟叫有什么征兆| 仓鼠不能吃什么| 护照免签是什么意思| 心口疼吃什么药| 积家手表什么档次| 水怡是什么| 8岁属什么| 过敏性鼻炎吃什么中药| 炖什么汤对肺部最好| 玻璃人是什么意思| 风平浪静是什么生肖| 粉碎性骨折吃什么好| 顽固不化是什么意思| 澄面粉是什么面粉| 射手后面的星座是什么| 尿发黄是什么原因男性| 落花雨你飘摇的美丽是什么歌| 血管是什么组织| 夏天喝什么茶好| 生育酚是什么| 莲蓬是什么| 网监是干什么的| amount是什么意思| 空调出现pl是什么意思| 属牛的跟什么属相最配| 用盐洗头发有什么好处| 双子男和什么星座最配| 总头晕是什么原因| 六月一日是什么星座| 什么是u| 阿魏是什么中药| 流脑是什么病| 梦见自己大便是什么意思| 总胆红素偏高说明什么| 汉武帝叫什么名字| 过路车是什么意思| 叔叔的女儿叫什么| 属兔的和什么属相最配| 梦见桥塌了有什么预兆| 为什么不建议小孩吃罗红霉素| 二月初四是什么星座| 婴儿黄疸母亲忌口什么| 边缘是什么意思| 陆陆续续是什么意思| 周朝之后是什么朝代| 为国为民是什么生肖| 出院记录是什么| 收到是什么意思| 甲鱼蛋什么人不能吃| 宾格是什么意思| 智商140是什么水平| 什么鱼清蒸最好吃| 1889年属什么生肖| 嘚是什么意思| 做腋臭手术挂什么科室| 为什么说白痰要人命| 脊椎和脊柱有什么区别| 治胃病吃什么药| 唐筛主要检查什么| 三月三号是什么星座| 结肠炎吃什么药好| zoey是什么意思| qq2g在线是什么意思| 龟头炎用什么药好| 06是什么生肖| 气管炎吃什么好| 吃狗肉有什么危害| 长口腔溃疡是什么原因| 嘴巴边上长痘痘是什么原因| 乌鸡炖什么好吃| 鸡心为什么不建议吃| 吃了羊肉不能吃什么| 吃维生素b2有什么好处和副作用| 口臭用什么牙膏| George是什么意思| 埋没是什么意思| 梦见手指流血是什么预兆| 炖羊肉放什么| 贫血看什么指标| 血浓度高是什么原因| 哔哩哔哩会员有什么用| 28岁今年属什么| 者羽念什么| 凶神宜忌是什么意思| 2024年属龙的是什么命| 北属于五行的什么| vb是什么| 肚脐眼连着什么器官| 对联又称什么| 黑色的裤子配什么颜色的上衣| 拉肚子吃点什么食物好| 乾字五行属什么| 干眼症用什么药最好| 水蚤吃什么| 焦虑症吃什么药| cooh是什么基| 竹肠是什么部位| 百度

北京:四环内限制各类用地调整建商品住宅

Editors:
Peter F. Patel-Schneider, Bell Labs Research, Lucent Technologies
Patrick Hayes, IHMC, University of West Florida
Ian Horrocks, Department of Computer Science, University of Manchester
百度 对很多中国观众来说,日本是创作怪兽故事的鼻祖,诞生了很多具有里程碑意义的怪兽灾难的作品,比如《奥特曼》,而最为著名的还属《哥斯拉》系列。

Please refer to the errata for this document, which may include some normative corrections.

See also translations.


Contents


5. RDF-Compatible Model-Theoretic Semantics (Normative)

This model-theoretic semantics for OWL is an extension of the semantics defined in the RDF semantics [RDF Semantics], and defines the OWL semantic extension of RDF.

NOTE: There is a strong correspondence between the semantics for OWL DL defined in this section and the Direct Model-Theoretic Semantics defined in Section 3 (see Theorem 1 and Theorem 2 in Section 5.4). If, however, any conflict should ever arise between these two forms, then the Direct Model-Theoretic Semantics takes precedence.

5.1. The OWL and RDF universes

All of the OWL vocabulary is defined on the 'OWL universe', which is a division of part of the RDF universe into three parts, namely OWL individuals, classes, and properties. The class extension of owl:Thing comprises the individuals of the OWL universe. The class extension of owl:Class comprises the classes of the OWL universe. The union of the class extensions of owl:ObjectProperty, owl:DatatypeProperty, owl:AnnotationProperty, and owl:OntologyProperty comprises the properties of the OWL universe.

There are two different styles of using OWL. In the more free-wheeling style, called OWL Full, the three parts of the OWL universe are identified with their RDF counterparts, namely the class extensions of rdfs:Resource, rdfs:Class, and rdf:Property. In OWL Full, as in RDF, elements of the OWL universe can be both an individual and a class, or, in fact, even an individual, a class, and a property. In the more restrictive style, called OWL DL here, the three parts are different from their RDF counterparts and, moreover, pairwise disjoint. The more-restrictive OWL DL style gives up some expressive power in return for decidability of entailment. Both styles of OWL provide entailments that are missing in a naive translation of the DAML+OIL model-theoretic semantics into the RDF semantics.

A major difference in practice between the two styles lies in the care that is required to ensure that URI references are actually in the appropriate part of the OWL universe. In OWL Full, no care is needed. In OWL DL, localizing information must be provided for many of the URI references used. These localizing assumptions are all trivially true in OWL Full, and can also be ignored when one uses the OWL abstract syntax, which corresponds closely to OWL DL. But when writing OWL DL in triples, however, close attention must be paid to which elements of the vocabulary belong to which part of the OWL universe.

Throughout this section the OWL vocabulary will be the disallowed vocabulary from OWL plus the built-in classes, the built-in annotation properties, and the built-in ontology properties.

5.2. OWL Interpretations

The semantics of OWL DL and OWL Full are very similar. The common portion of their semantics is thus given first, and the differences left until later.

From the RDF semantics [RDF Semantics], for V a set of URI references and literals containing the RDF and RDFS vocabulary and D a datatype map, a D-interpretation of V is a tuple I = < RI, PI, EXTI, SI, LI, LVI >. RI is the domain of discourse or universe, i.e., a nonempty set that contains the denotations of URI references and literals in V. PI is a subset of RI, the properties of I. EXTI is used to give meaning to properties, and is a mapping from PI to P(RI × RI). SI is a mapping from URI references in V to their denotations in RI. LI is a mapping from typed literals in V to their denotations in RI. LVI is a subset of RI that contains at least the set of Unicode strings, the set of pairs of Unicode strings and language tags, and the value spaces for each datatype in D. The set of classes CI is defined as CI = { x ∈RI | <x,SI(rdfs:Class)> ∈ EXTI(SI(rdf:type)) }, and the mapping CEXTI from CI to P(RI) is defined as CEXTI(c) = { x∈RI | <x,c>∈EXTI(SI(rdf:type)) }. D-interpretations must meet several other conditions, as detailed in the RDF semantics. For example, EXTI(SI(rdfs:subClassOf)) must be a transitive relation and the class extension of all datatypes must be subsets of LVI.

Definition: Let D be a datatype map that includes datatypes for rdf:XMLLiteral, xsd:integer and xsd:string. An OWL interpretation, I = < RI, PI, EXTI, SI, LI, LVI >, of a vocabulary V, where V includes the RDF and RDFS vocabularies and the OWL vocabulary, is a D-interpretation of V that satisfies all the constraints in this section.

Note: Elements of the OWL vocabulary that construct descriptions in the abstract syntax are given a different treatment from elements of the OWL vocabulary that correspond to (other) semantic relationships. The former have only-if semantic conditions and comprehension principles; the latter have if-and-only-if semantic conditions. The only-if semantic conditions for the former are needed to prevent semantic paradoxes and other problems with the semantics. The comprehension principles for the former and the if-and-only-if semantic conditions for the latter are needed so that useful entailments are valid.

Conditions concerning the parts of the OWL universe and syntactic categories

If E is then Note
SI(E)∈ CEXTI(SI(E))= and
owl:Class CIIOCIOC⊆CI This defines IOC as the set of OWL classes.
rdfs:Datatype IDCIDC⊆CI This defines IDC as the set of OWL datatypes.
owl:RestrictionCIIORIOR⊆IOC This defines IOR as the set of OWL restrictions.
owl:Thing IOCIOT IOT⊆RI and IOT ≠ ∅ This defines IOT as the set of OWL individuals.
owl:Nothing IOC{}
rdfs:Literal IDCLVILVI⊆RI
owl:ObjectProperty CIIOOPIOOP⊆PI This defines IOOP as the set of OWL individual-valued properties.
owl:DatatypeProperty CIIODPIODP⊆PI This defines IODP as the set of OWL datatype properties.
owl:AnnotationProperty CIIOAPIOAP⊆PI This defines IOAP as the set of OWL annotation properties.
owl:OntologyProperty CIIOXPIOXP⊆PI This defines IOXP as the set of OWL ontology properties.
owl:Ontology CIIX This defines IX as the set of OWL ontologies.
owl:AllDifferent CIIAD
rdf:List ILIL⊆RI This defines IL as the set of OWL lists.
rdf:nilIL
"l"^^d CEXTI(SI(d)) SI("l"^^d) ∈ LVI Typed literals are well-behaved in OWL.

OWL built-in syntactic classes and properties

I(owl:FunctionalProperty), I(owl:InverseFunctionalProperty), I(owl:SymmetricProperty), I(owl:TransitiveProperty), I(owl:DeprecatedClass), and I(owl:DeprecatedProperty) are in CI.

I(owl:equivalentClass), I(owl:disjointWith), I(owl:equivalentProperty), I(owl:inverseOf), I(owl:sameAs), I(owl:differentFrom), I(owl:complementOf), I(owl:unionOf), I(owl:intersectionOf), I(owl:oneOf), I(owl:allValuesFrom), I(owl:onProperty), I(owl:someValuesFrom), I(owl:hasValue), I(owl:minCardinality), I(owl:maxCardinality), I(owl:cardinality), and I(owl:distinctMembers) are all in PI.

I(owl:versionInfo), I(rdfs:label), I(rdfs:comment), I(rdfs:seeAlso), and I(rdfs:isDefinedBy) are all in IOAP. I(owl:imports), I(owl:priorVersion), I(owl:backwardCompatibleWith), and I(owl:incompatibleWith), are all in IOXP.

Characteristics of OWL classes, datatypes, and properties

If E is then if e∈CEXTI(SI(E)) then Note
owl:ClassCEXTI(e)⊆IOT Instances of OWL classes are OWL individuals.
rdfs:DatatypeCEXTI(e)⊆LVI
owl:DataRange CEXTI(e)⊆LVI OWL dataranges are special kinds of datatypes.
owl:ObjectPropertyEXTI(e)⊆IOT×IOT Values for individual-valued properties are OWL individuals.
owl:DatatypePropertyEXTI(e)⊆IOT×LVI Values for datatype properties are literal values.
owl:AnnotationPropertyEXTI(e)⊆IOT×(IOT∪LVI) Values for annotation properties are less unconstrained.
owl:OntologyPropertyEXTI(e)⊆IX×IX Ontology properties relate ontologies to other ontologies.
If E is then c∈CEXTI(SI(E)) iff c∈IOOP∪IODP and Note
owl:FunctionalProperty <x,y1>, <x,y2> ∈ EXTI(c) implies y1 = y2 Both individual-valued and datatype properties can be functional properties.
If E is then c∈CEXTI(SI(E)) iff c∈IOOP and Note
owl:InverseFunctionalProperty <x1,y>, <x2,y>∈EXTI(c) implies x1 = x2 Only individual-valued properties can be inverse functional properties.
owl:SymmetricProperty <x,y> ∈ EXTI(c) implies <y, x>∈EXTI(c) Only individual-valued properties can be symmetric properties.
owl:TransitiveProperty <x,y>, <y,z>∈EXTI(c) implies <x,z>∈EXTI(c) Only individual-valued properties can be transitive properties.

If-and-only-if conditions for rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and rdfs:range

If E is then for<x,y>∈EXTI(SI(E)) iff
rdfs:subClassOf x,y∈IOC CEXTI(x) ⊆ CEXTI(y)
rdfs:subPropertyOf x,y∈IOOP EXTI(x) ⊆ EXTI(y)
rdfs:subPropertyOf x,y∈IODP EXTI(x) ⊆ EXTI(y)
rdfs:domain x∈IOOP∪IODP,y∈IOC <z,w>∈EXTI(x) implies z∈CEXTI(y)
rdfs:range x∈IOOP∪IODP,y∈IOC∪IDC <w,z>∈EXTI(x) implies z∈CEXTI(y)

Characteristics of OWL vocabulary related to equivalence

If E is then <x,y>∈EXTI(SI(E)) iff
owl:equivalentClass x,y∈IOC and CEXTI(x)=CEXTI(y)
owl:disjointWith x,y∈IOC and CEXTI(x)∩CEXTI(y)={}
owl:equivalentProperty x,y∈IOOP∪IODP and EXTI(x) = EXTI(y)
owl:inverseOf x,y∈IOOP and <u,v>∈EXTI(x) iff <v,u>∈EXTI(y)
owl:sameAs x = y
owl:differentFrom x ≠ y

Conditions on OWL vocabulary related to boolean combinations and sets

We will say that l1 is a sequence of y1,…,yn over C iff n=0 and l1=SI(rdf:nil) or n>0 and l1∈IL and ∃ l2, …, ln ∈ IL such that
<l1,y1>∈EXTI(SI(rdf:first)), y1∈C, <l1,l2>∈EXTI(SI(rdf:rest)), …,
<ln,yn>∈EXTI(SI(rdf:first)), yn∈C, and <ln,SI(rdf:nil)>∈EXTI(SI(rdf:rest)).

If E is then <x,y>∈EXTI(SI(E)) iff
owl:complementOf x,y∈ IOC and CEXTI(x)=IOT-CEXTI(y)
owl:unionOf x∈IOC and y is a sequence of y1,…yn over IOC and CEXTI(x) = CEXTI(y1)∪…∪CEXTI(yn)
owl:intersectionOf x∈IOC and y is a sequence of y1,…yn over IOC and CEXTI(x) = CEXTI(y1)∩…∩CEXTI(yn)
owl:oneOf x∈CI and y is a sequence of y1,…yn over IOT or over LVI and CEXTI(x) = {y1,..., yn}

Further conditions on owl:oneOf

If E isand then if <x,l>∈EXTI(SI(E)) then
owl:oneOfl is a sequence of y1,…yn over LVI x∈IDC
owl:oneOfl is a sequence of y1,…yn over IOT x∈IOC

Conditions on OWL restrictions

If then x∈IOR, y∈IOC∪IDC, p∈IOOP∪IODP, and CEXTI(x) =
<x,y>∈EXTI(SI(owl:allValuesFrom))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | <u,v>∈EXTI(p) implies v∈CEXTI(y) }
<x,y>∈EXTI(SI(owl:someValuesFrom))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | ∃ <u,v>∈EXTI(p) such that v∈CEXTI(y) }
If then x∈IOR, y∈IOT∪LVI, p∈IOOP∪IODP, and CEXTI(x) =
<x,y>∈EXTI(SI(owl:hasValue))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | <u, y>∈EXTI(p) }
If then x∈IOR, y∈LVI, y is a non-negative integer, p∈IOOP∪IODP, and CEXTI(x) =
<x,y>∈EXTI(SI(owl:minCardinality))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | card({v ∈ IOT ∪ LV : <u,v>∈EXTI(p)}) ≥ y }
<x,y>∈EXTI(SI(owl:maxCardinality))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | card({v ∈ IOT ∪ LV : <u,v>∈EXTI(p)}) ≤ y }
<x,y>∈EXTI(SI(owl:cardinality))) ∧
<x,p>∈EXTI(SI(owl:onProperty)))
{u∈IOT | card({v ∈ IOT ∪ LV : <u,v>∈EXTI(p)}) = y }

Comprehension conditions (principles)

The first two comprehension conditions require the existence of the finite sequences that are used in some OWL constructs. The third comprehension condition requires the existence of instances of owl:AllDifferent. The remaining comprehension conditions require the existence of the appropriate OWL descriptions and data ranges.

If there exists then there exists l1,…,ln ∈ IL with
x1, …, xn ∈ IOC <l1,x1> ∈ EXTI(SI(rdf:first)), <l1,l2> ∈ EXTI(SI(rdf:rest)), …
<ln,xn> ∈ EXTI(SI(rdf:first)), <ln,SI(rdf:nil)> ∈ EXTI(SI(rdf:rest))
x1, …, xn ∈ IOT∪LVI <l1,x1> ∈ EXTI(SI(rdf:first)), <l1,l2> ∈ EXTI(SI(rdf:rest)), …
<ln,xn> ∈ EXTI(SI(rdf:first)), <ln,SI(rdf:nil)> ∈ EXTI(SI(rdf:rest))
If there exists then there exists y with
l, a sequence of x1,…,xn over IOT
with xi≠xj for 1≤i<j≤n
y∈IAD, <y,l>∈EXTI(SI(owl:distinctMembers))
If there exists then there exists y with
l, a sequence of x1,…,xn over IOC y∈IOC, <y,l> ∈ EXTI(SI(owl:unionOf))
l, a sequence of x1,…,xn over IOC y∈IOC, <y,l> ∈ EXTI(SI(owl:intersectionOf))
l, a sequence of x1,…,xn over IOT y∈IOC, <y,l> ∈ EXTI(SI(owl:oneOf))
l, a sequence of x1,…,xn over LVI y∈IDC, <y,l> ∈ EXTI(SI(owl:oneOf))
If there exists then there exists y ∈ IOC with
x ∈ IOC <y,x> ∈ EXTI(SI(owl:complementOf))
If there exists then there exists y ∈ IOR with
x ∈ IOOP∪IODP ∧ w ∈ IOC ∪ IDC <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:allValuesFrom))
x ∈ IOOP∪IODP ∧ w ∈ IOC ∪ IDC <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:someValuesFrom))
x ∈ IOOP∪IODP ∧ w ∈ IOT ∪ LVI <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:hasValue))
x ∈ IOOP∪IODP ∧ w ∈ LVI ∧ w is a non-negative integer <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:minCardinality))
x ∈ IOOP∪IODP ∧ w ∈ LVI ∧ w is a non-negative integer <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:maxCardinality))
x ∈ IOOP∪IODP ∧ w ∈ LVI ∧ w is a non-negative integer <y,x> ∈ EXTI(SI(owl:onProperty)) ∧
<y,w> ∈ EXTI(SI(owl:cardinality))

5.3. OWL Full

OWL Full augments the common conditions with conditions that force the parts of the OWL universe to be the same as their analogues in RDF. These new conditions strongly interact with the common conditions. For example, because in OWL Full IOT is the entire RDF domain of discourse, the second comprehension condition for lists generates lists of any kind, including lists of lists.

Definition: An OWL Full interpretation of a vocabulary V is an OWL interpretation that satisfies the following conditions (recall that an OWL interpretation is with respect to a datatype map).

IOT = RI
IOOP = PI
IOC = CI

Definition: Let K be a collection of RDF graphs. K is imports closed iff for every triple in any element of K of the form x owl:imports u . then K contains a graph that is the result of the RDF processing of the RDF/XML document, if any, accessible at u into an RDF graph. The imports closure of a collection of RDF graphs is the smallest import-closed collection of RDF graphs containing the graphs.

Definitions: Let K and Q be collections of RDF graphs and D be a datatype map. Then K OWL Full entails Q with respect to D iff every OWL Full interpretation with respect to D (of any vocabulary V that includes the RDF and RDFS vocabularies and the OWL vocabulary) that satisfies all the RDF graphs in K also satisfies all the RDF graphs in Q. K is OWL Full consistent iff there is some OWL Full interpretation that satisfies all the RDF graphs in K.

5.4. OWL DL

OWL DL augments the conditions of Section 5.2 with a separation of the domain of discourse into several disjoint parts. This separation has two consequences. First, the OWL portion of the domain of discourse becomes standard first-order, in that predicates (classes and properties) and individuals are disjoint. Second, the OWL portion of a OWL DL interpretation can be viewed as a Description Logic interpretation for a particular expressive Description Logic.

Definition: A OWL DL interpretation of a vocabulary V is an OWL interpretation that satisfies the following conditions (recall that an OWL interpretation is with respect to a datatype map).

LVI, IOT, IOC, IDC, IOOP, IODP, IOAP, IOXP, IL, and IX are all pairwise disjoint.
For v in the disallowed vocabulary (Section 4.2), SI(v) ∈ RI - (LVI∪IOT∪IOC∪IDC∪IOOP∪IODP∪IOAP∪IOXP∪IL∪IX).

Entailment in OWL DL is defined similarly to entailment in OWL Full.

Definitions: Let K and Q be collections of RDF graphs and D be a datatype map. Then K OWL DL entails Q with respect to D iff every OWL DL interpretation with respect to D (of any vocabulary V that includes the RDF and RDFS vocabularies and the OWL vocabulary) that satisfies all the RDF graphs in K also satisfies all the RDF graphs in Q. K is OWL DL consistent iff there is some OWL DL interpretation that satisfies all the RDF graphs in K.

There is a strong correspondence between the Direct Model-Theoretic Semantics and the OWL DL semantics (but in case of any conflict, the Direct Model-Theoretic Semantics takes precedence—see the Note at the beginning of Section 5). Basically, an ontology that could be written in the abstract syntax OWL DL entails another exactly when it entails the other in the direct semantics. There are a number of complications to this basic story having to do with splitting up the vocabulary so that, for example, concepts, properties, and individuals do not interfere, and arranging that imports works the same.

For the correspondence to be valid there has to be some connection between an ontology in the abstract syntax with a particular name and the document available on the Web at that URI. This connection is outside the semantics here, and so must be specially arranged. This connection is also only an idealization of the Web, as it ignores temporal and transport aspects of the Web.

Definition: Let T be the mapping from the abstract syntax to RDF graphs from Section 4.1. Let O be a collection of OWL DL ontologies and axioms and facts in abstract syntax form. O is said to be imports closed iff for any URI, u, in an imports directive in any ontology in O the RDF parsing of the document accessible on the Web at u results in T(K), where K is the ontology in O with name u.

Theorem 1: Let O and O' be collections of OWL DL ontologies and axioms and facts in abstract syntax form that are imports closed, such that their union has a separated vocabulary (Section 4.2). Given a datatype map D that maps xsd:string and xsd:integer to the appropriate XML Schema datatypes and that includes the RDF mapping for rdf:XMLLiteral, then O entails O' with respect to D if and only if the translation (Section 4.1) of O OWL DL entails the translation of O' with respect to D.
The proof is contained in Appendix A.1.

A simple corollary of this is that, given a datatype map D that maps xsd:string and xsd:integer to the appropriate XML Schema datatypes and that includes the RDF mapping for rdf:XMLLiteral, O is consistent with respect to D if and only if the translation of O is consistent with respect to D.

There is also a correspondence between OWL DL entailment and OWL Full entailment.

Theorem 2: Let O and O' be collections of OWL DL ontologies and axioms and facts in abstract syntax form that are imports closed, such that their union has a separated vocabulary (Section 4.2). Given a datatype map D that maps xsd:string and xsd:integer to the appropriate XML Schema datatypes and that includes the RDF mapping for rdf:XMLLiteral, then the translation of O OWL Full entails the translation of O' with respect to D if the translation of O OWL DL entails the translation of O' with respect to D. A sketch of the proof is contained in Appendix A.2.


淀粉酶高有什么危害 闰月是什么意思 埃及是什么人种 老年人出虚汗是什么原因引起的 胃动力不足吃什么中成药
蛇为什么怕雄黄 腺癌是什么原因引起的 晚安安是什么意思 aj是什么 钯金和铂金有什么区别
厨房墙砖什么颜色好看 佳什么意思 左传是一部什么体史书 五月是什么月 大便次数多吃什么药
送什么礼品好 日新月异什么意思 特殊情况是什么意思 五行缺什么怎么算 肝痛在什么位置
脚环肿是什么原因引起的adwl56.com 嘴巴里长泡是什么原因hcv9jop1ns5r.cn 神经衰弱吃什么好hcv8jop7ns2r.cn 野蛮生长是什么意思hcv9jop1ns6r.cn 苹果是什么意思hcv9jop5ns3r.cn
7.2号是什么星座hcv8jop6ns5r.cn 老人吃什么钙片补钙效果最好yanzhenzixun.com 10个月的宝宝吃什么辅食最好hcv9jop8ns1r.cn 彩排是什么意思hcv9jop2ns8r.cn md是什么牌子chuanglingweilai.com
7月1号什么节hcv9jop0ns3r.cn 叒字什么意思hcv8jop4ns3r.cn 摄人心魄是什么意思hcv8jop5ns2r.cn 克拉是什么意思hcv9jop3ns1r.cn 头晕是什么症状hcv8jop3ns4r.cn
黑色素痣看什么科hcv7jop4ns8r.cn 什么是性病xianpinbao.com 诸多是什么意思hcv7jop6ns6r.cn 早餐做什么简单又好吃dajiketang.com 1961年属什么生肖hcv9jop6ns8r.cn
百度